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Abstract. We construct a simple two-phase model of the nucleon structure functions valid for both small
and large Q2 and in the broad range of Bjorken x. The model incorporates hadron dominance at small x
and Q2 and parton model at large Q2. The VDM contribution is modified for small fluctuation times of the
hadronic state of the photon. With two free parameters we describe SLAC, CERN NMC, Fermilab E665
and CERN BCDMS data for both proton and deuteron structure functions. Our model explains some
phenomenological higher-twist effects extracted from earlier analyses. A good description of the NMC
F p

2 (x) − F n
2 (x) data is obtained in contrast to other models in the literature. We predict faster vanishing

of the partonic component at low Q2 than previously expected and strong Q2 dependence of the Gottfried
Sum Rule below Q2 ≈ 4 GeV2.

1 Introduction

The standard deep inelastic scattering picture applies
when the four-momentum transfer squared from the lep-
ton line to the hadron line (Q2) is large. When virtual pho-
ton wave length increases and reaches the size of the nu-
cleon one may expect a transition to another regime where
the standard partonic model is no longer valid. In this re-
gion a kinematical constraint [1] guarantees the vanishing
of the F2(x, Q2) structure function. This requirement is
not embodied in the perturbative parton distributions. A
phenomenological fit based on parton screening was pro-
posed in [2] to satisfy this condition by introducing an
extra form factor.

The recent low-Q2 data from HERA [3,4] have trig-
gered many phenomenological analyses. Especially inter-
esting is the unexplored transition region. At present there
is no consensus on the details of the transition mechanism.
Here we concentrate on the region of somewhat larger x
rather than the new HERA data. We shall demonstrate
that also at larger x a similar transition due to vanishing
partonic components at small Q2 takes place, although it
is not directly seen from experimental data.

It is common wisdom that the vector dominance model
applies at low Q2 while the parton model describes the re-
gion of large Q2, leading at lowest order to Bjorken scal-
ing, and to logarithmic scaling violation in higher orders
of QCD. A proposal was made in [7] to unify both the
limits in a consistent dispersion method approach. In the
traditional formulation of the VDM one is limited to large
lifetimes of hadronic fluctuations of the virtual photon, i.e.
small Bjorken x < 0.1 for the existing data. It is a purpose

of this paper to generalize the model to a full range of Q2

and x by introducing extra phenomenological form factors
to be adjusted to the experimental data.

Some authors believe that it is old-fashioned to talk
about VDM contribution in the QCD era. However, VDM
effects appear naturally in the time-like region in the pro-
duction of vector mesons in e+e− collisions. These effects
cannot be described in terms of perturbative QCD, as in
the production of resonances many complicated nonper-
turbative effects take place. The physics must be similar
in the space-like region. We shall demonstrate that it is
essential to include this contribution explicitly in order to
describe the structure functions at low Q2.

In the next section we outline our model and discuss
how to choose its basic parameters in a model independent
way. In Sect. 3 we discuss a fit of the remaining param-
eters to the fixed target data and present results of the
fitting procedure for the proton and deuteron structure
functions. In addition we compare the result of our model
for F p

2 −Fn
2 and some subtle isovector higher-twist effects

with another low-Q2 model. Finally we discuss some in-
teresting predictions which could be verified in the future.

2 The model

As in [7] the total nucleon structure function is represented
as a sum of the standard vector dominance part, impor-
tant at small Q2 and/or small Bjorken x, and partonic
(part) piece which dominates over the vector dominance
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(VDM) part at large Q2:

FN
2 (x, Q2) = FN,V DM

2 (x, Q2) + FN,part
2 (x, Q2) . (1)

The standard range of applicability of vector dominance
contribution is limited to large invariant masses of the
hadronic system (W ), i.e. small values of x. In the target
(nucleon) reference frame the time of life of the hadronic
fluctuation is given according to the uncertainty principle
as τ ∼ 1/∆E with

∆E =
√

M2
V + |q|2 −

√
q2 + |q|2 , (2)

where MV is the mass of the hadronic fluctuation (vec-
tor meson mass). In terms of the photon virtuality and
Bjorken x this can be expressed as

∆E =
M2

V + Q2

Q2 · MNx . (3)

As the energy transfer ν → ∞ the time of life of the
hadronic fluctuaction becomes τ ∼ Q2

M2
V

mN x
. It is natural

to expect small VDM contribution when the time of life of
the hadronic fluctuation is small. We shall model this fact
by introducing a form factor Ω(τ) = Ω(x, Q2). Then the
modified vector dominance contribution can be written as:

FN,V DM
2 (x, Q2) =

Q2

π

∑
V

M4
V · σtot

V N (s1/2)
γ2

V (Q2 + M2
V )2

· ΩV (x, Q2) .

(4)
In the present paper we take γ’s calculated from the lep-
tonic decays of vector mesons which include finite width
corrections [8] γ2

ρ/4π = 2.54, γ2
ω/4π = 20.5, γ2

φ/4π = 11.7.1
In general one can try different functional forms for Ω.

In the present analysis we shall use only exponential and
Gaussian form factors

Ω(x, Q2) = exp(−∆E/λE) ,

Ω(x, Q2) = exp(−(∆E/λG)2) . (5)

As in [7] we take the partonic contribution as

FN,part
2 (x, Q2) =

Q2

Q2 + Q2
0

· F asymp
2 (x̄, Q̄2) . (6)

where x̄ = Q2+Q2
2

W 2−m2
N

+Q2+Q2
2

and Q̄2 = Q2 + Q2
1. The

F asymp
2 (x, Q2) above denotes the standard partonic struc-

ture function which in the leading order can be expressed
in terms of the quark distributions:

F asymp
2 (x, Q2) = x · ∑

f e2
f · [

qf (x, Q2) + q̄f (x, Q2)
]
.

The extra factor in front of (6) assures a correct kinematic
beheviour in the limit Q2 → 0. In general Q2

0, Q2
1 and Q2

2
can be slightly different. In the following section we shall
consider different options.

1 Please note different normalization of γ’s in comparison
to [7].

At large Bjorken x one has to include also the so-
called target mass corrections. Their origin is mainly kine-
matic [10]. In our approximate treatment we substitute
the Bjorken variable x in the partonic distributions by
the Nachtmann variable ξ [11] given by:

ξ =
2x

1 +
√

(1 + 4M2
N

x2

Q2 )
, (7)

which is the dominant modification.
In principle F asymp

2 (x, Q2) could be obtained in any
realistic model of the nucleon combined with QCD evo-
lution. We leave the rather difficult problem of model-
ing the partonic distributions for future studies. We ex-
pect that at not too small x > 0.01, the region of the
interest of the present paper, the leading order Glück-
Reya-Vogt (GRV) parametrization of F p,asymp

2 (x, Q2) and
Fn,asymp

2 (x, Q2) should be adequate. Furthermore in our
opinion the parametrization [9] with the valence-like in-
put for the sea quark distributions and d̄ - ū asymmetry
built in incorporates in a phenomenological way nonper-
turbative effects caused by the meson cloud in the nucleon
[12].

The total cross section for (vector meson) – (nucleon)
collision is not well known. Above meson-nucleon reso-
nances, one may expect the following approximation to
hold:

σtot
ρN = σtot

ωN =
1
2

[
σtot

π+p + σtot
π−p

]
,

σtot
φN = σtot

K+p + σtot
K−p − 1

2

[
σtot

π+p + σtot
π−p

]
. (8)

Using a simple Regge-inspired parametrizations by
Donnachie-Landshoff [13] of the total πN and KN cross
sections we get simple and economic parametrizations for
energies above nucleon resonances

σtot
ρN = σtot

ωN = 13.63 · s0.0808 + 31.79 · s−0.4525 ,

σtot
φN = 10.01 · s0.0808 + 2.72 · s−0.4525 , (9)

where the resulting cross sections are in mb.
We expect that our model should be valid in a broad

range of x and Q2 except for very small x < 0.001, where
genuine effects of BFKL pomeron physics could show up,
and except for very large x, where the energy (s1/2 in (4))
is small and the behaviour of the total V N cross section is
essentially unknown. Because our main interest is in the
transition region, the large Q2 data were not taken into
account in the fit. There the partonic contribution is by
far dominant and the GRV parametrization [9] is known
to provide a reliable description of the data.

3 Comparison to experimental data

Most of the previous parametrizations in the literature
centered on the proton structure function. In the present
analysis we are equally interested in both proton and neu-
tron structure functions. Achieving this goal requires spe-
cial selection of the experimental data with similar statis-
tics and similar range in (x,Q2) for proton and deuteron
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Fig. 1. The presentation in the (x, Q2)
plane of the experimental data included
in the fit for proton (left panel) and
deuteron (right panel) structure func-
tions. For reference shown are lines with
constant W = 2 GeV which convention-
ally separate resonance and DIS regions

structure function. In Fig. 1 we display the experimen-
tal data for proton (left panel) and deuteron (right panel)
structure functions chosen in our fit. We have selected
only NMC, E665 and SLAC sets of data [18] for both pro-
ton and deuteron structure functions, together amounting
to 1833 experimental points: 901 for the proton structure
function and 932 for the deuteron structure function. Ac-
cording to the arguments presented above, we have omit-
ted BCDMS and HERA data in the fitting procedure but
these will be compared to our parametrization when dis-
cussing the quality of the fit.

The deuteron structure function has been calculated
as

F d
2 (x, Q2) =

1
2

[F p
2 (x, Q2) + Fn

2 (x, Q2)] , (10)

i.e. we have neglected all nuclear effects such as shad-
owing, antishadowing due to excess mesons, Fermi mo-
tion, binding, etc, which are known to be relatively small
for the structure function of the deuteron [14–16], one
of the most loosely bound nuclear systems. In addition
we have assumed isospin symmetry for the proton and
neutron quark distributions, i.e. un(x, Q2) = dp(x, Q2),
dn(x, Q2) = up(x, Q2) and sn(x, Q2) = sp(x, Q2). The
charm contribution, which in the GRV parametrization [9]
is due to the photon-gluon fusion, is in practice negligible
in the region of x and Q2 taken in the fit, and therefore is
omitted throughout the present analysis.

The results of the fit are summarised in Table 1. Be-
cause in general Q2

0, Q2
1 and Q2

2 can be different, there
are 4 independent free parameters of the model. In order
to limit the number of parameters we have imposed extra
conditions as specified in Table 1. A series of seven fits
has been performed. In all cases considered the number
of free parameters has been reduced to two: the cut-off
parameter of the form factor and Q2

0. Statistical and sys-
tematic errors were added in quadrature when calculating
χ2. Only data with Q2 > 0.25 GeV2 were taken in the
fit which is connected with the domain of applicability
of the GRV parametrization. The values of the parame-
ters found are given in each case in parentheses below the
value of χ2 per degree of freedom. In addition to the com-
bined fit, which includes both proton F p

2 and deuteron F d
2

structure function data, we show the result of the fit sepa-

rately for proton and deuteron structure functions. As can
be seen from the table fairly similar values of parameters
are found for the proton and deuteron structure function
and the χ2 per degree of freedom is slightly worse in the
latter case which can be due to the omission of nuclear ef-
fects as mentioned above. The best fit (No 1 in the table)
is obtained with Q2

1 = Q2
2 = 0 (fits of similar quality can

be obtained with very small values of Q2
1 ∼ 0.1 GeV2 and

Q2
2 ∼ 0.1 GeV2). While the value of χ2 does not practi-

cally depend on the type of the form factor (exponential
vs. Gaussian), much larger value of Q2

0 is found for the
Gaussian (Q2

0 = 0.84 GeV2) than for the exponential (Q2
0

= 0.52 GeV2) parametrization. The value of Q2
0 found here

is smaller than in the original Bade lek-Kwieciński model
[7] but larger than that found by H1 collaboration in the
fit to low-x data [3].

Although the resulting χ2 is similar in both cases, the
Fn

2 (x)/F p
2 (x) ratio for x → 1 prefers the Gaussian form

factor. While the vector meson contribution with the ex-
ponential form factor survives up to relatively large x,
with the Gaussian form factor it is negligible at large x..

For comparison the GRV parametrization of quark dis-
tributions alone yields:

χ2/Ndof = 9.74 (21.48) (proton structure functions),
χ2/Ndof = 13.73 (32.99) (deuteron structure functions),
χ2/Ndof = 11.77 (27.33) (combined data),

where the first numbers include target mass corrections
and for illustration in parentheses their counterparts with-
out target mass corrections are given. Clearly the inclusion
of the target mass effects is essential and only such results
will be discussed in the course of the present paper.

The agreement of the CKMT parametrization is com-
parable to that obtained in our model. For instance for
parametrization (b) in Table 2 in the second paper [6],
which includes new HERA data:

χ2/Ndof = 2.22 (1.00) (proton structure functions),
χ2/Ndof = 3.54 (3.59) (deuteron structure functions),
χ2/Ndof = 2.89 (2.33) (combined data),

where in the parentheses we present χ2 for Q2 < 4 GeV2

i.e. in the region of applicability of the CKMT parametriza-
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Table 1. A compilation of the results obtained from our fit. The χ2 per degree of freedom are given in
first lines whereas the pairs of numbers in second lines are the parameters (λ (GeV), Q2

0 (GeV2)) found
in the fit

exponential Gaussian
case F p

2 and F d
2 F p

2 F d
2 F p

2 and F d
2 F p

2 F d
2

1) Q2
1 = Q2

2 = 0 2.39 2.13 2.63 2.38 1.90 2.66
(0.31,0.52) (0.30,0.51) (0.31,0.53) (0.50,0.84) (0.49,0.77) (0.50,0.87)

2a) Q2
1 = Q2

0 3.24 2.79 3.68 2.79 2.27 3.15
(0.34,0.51) (0.33,0.50) (0.34,0.51) (0.53,0.77) (0.53,0.77) (0.53,0.84)

2b) Q2
1 =0.5 GeV2 3.20 2.77 3.61 2.53 2.05 2.85

(0.34,0.53) (0.34,0.52) (0.34,0.53) (0.52,0.82) (0.52,0.78) (0.52,0.85)
3a) Q2

2 = Q2
0 4.13 3.46 4.74 3.60 3.14 4.02

(0.37,0.43) (0.36,0.44) (0.37,0.43) (0.56,0.66) (0.57,0.66) (0.56,0.66)
3b) Q2

2 =0.5 GeV2 4.50 3.67 5.24 2.88 2.48 3.24
(0.40,0.47) (0.39,0.48) (0.39,0.45) (0.56,0.73) (0.56,0.72) (0.55,0.74)

4a) Q2
1 = Q2

2 = Q2
0 5.92 4.96 6.79 5.49 4.74 6.20

(0.38,0.40) (0.38,0.41) (0.38,0.38) (0.58,0.60) (0.58,0.60) (0.57,0.60)
4b) Q2

1 = Q2
2 7.06 5.67 8.32 4.26 3.63 4.84

= 0.5 GeV2 (0.43,0.45) (0.43,0.47) (0.42,0.43) (0.57,0.70) (0.58,0.70) (0.57,0.70)

Fig. 2. A map of the χ2 per degree of freedom in the (λ, Q2
0)

space of the model parameters for combined fit to the proton
and deuteron structure functions with the Gaussian form factor

tion.2 We note much better description of the proton data
in comparison to the deuteron data. The agreement of the
Donnachie-Landshoff parametrization [5] with the proton
structure function data is of similar quality.

In Fig. 2 we present for completeness a map of χ2 for
our best fit as a function of model parameters Q2

0 and
λ. A well defined minimum of χ2 for λG ≈ 0.5 GeV and
Q2

0 ≈ 0.85 GeV2 can be seen. The experimental statistical

2 The number of experimental points is reduced then to 354
and 373 for proton and deuteron structure functions, respec-
tively

uncertainty of the obtained parameters λG and Q2
0 is less

than 1 %.
Some examples of the fit quality can be seen in Fig. 3

(x-dependence for different values of Q2 = 0.585, 1.1, 2.0,
3.5 GeV2) and in Figs. 4, 5 (Q2-dependence for different
values of Bjorken x = 0.00127, 0.0125, 0.05, 0.10, 0.18,
0.35, 0.55, 0.75). Shown are experimental data [18] which
differ from the nominal Q2 or Bjorken x specified in Fig. 3,
4, 5 by less than ± 3 %. An excellent fit is obtained for
Q2 > 4 GeV2 (not shown in Fig. 3), although the VDM
contribution stays large up to 10 GeV2. In comparison
to the GRV parametrization (dashed line) our model de-
scribes much better the region of small Q2 < 3 GeV2,
especially at intermediate Bjorken x: 0.05 < x < 0.4. The
CKMT model (long-dashed line), shown according to the
philosophy in [6] for Q2 < 10 GeV2 gives a better fit at
very small Bjorken x. However, one may expect here a few
more effects which will be discussed below.3 It is however
slightly worse as far as isovector quantities are considered,
as will be discussed later. There seems to be a systemat-
ically small (up to about 5 %) discrepancy between our
model and the data for Q2 < 2 GeV2 and x = 0.1 - 0.3.
This is caused by some higher-twist effects due to the pro-
duction of the πN [17] and π∆ exclusive channels and will
be discussed elsewhere. A fit of similar quality is obtained
in our model for the proton (left panels) and deuteron
(right panels) structure functions. Rather good agreement
of our model with the BCDMS data can be observed in
Figs. 4 and 5 in spite of the fact that the data were not
used in the fitting procedure.

3 The use of the next-to-leading order structure functions
[9] in our model would improve the description of low-x data,
discussion of which is left for a separate analysis.
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Fig. 3. Comparison of the model re-
sults with experimental data for F p

2
(l.h.s.) and F d

2 (r.h.s.) as a function of
Bjorken x for different values of Q2 =
0.585, 1.1, 2.0, 3.5 GeV2 . The solid line
corresponds to our full model with the
Gaussian form factor. We present also
the modified VDM contribution (short-
dashed) and for comparison also the re-
sult obtained with GRV parametriza-
tion [9] (corrected for target mass ef-
fects) of quark distributions (dashed
line) and that of the CKMT model [6]
(long-dashed line)

At very small x < 0.01 the description of the data be-
comes worse. This is partially due to the use of the lead-
ing order approximation. The fit to the fixed-target data
prefers x̄ ≈ x and Q̄2 ≈ Q2 (see Table 1 and the discus-
sion therein). On the other hand, the HERA data would
prefer Q2

1 6= 0 and Q2
2 6= 0. If we included the HERA data

in the fit the description of the fixed target data would
become worse. There are no fundamental reasons for the
parameters in both regions to be identical. In addition at
very small x other effects of isoscalar character, not in-
cluded here, such as heavy long-lived fluctuactions of the

incoming photon [19] and/or BFKL pomeron effects [20],
may become important.

For illustration a VDM contribution modified by a
form factor (5) is shown separately by the short-dashed
line. The partonic component can be obtained as a differ-
ence between the solid and VDM line. It can be seen from
Figs. 3-5 that the partonic component decreases towards
small Q2. This decrease is faster than one could directly
infer from the failure of the GRV parametrization at low
Q2 because in our model a part of the strength resides in
the VDM contribution. The modified VDM contribution is
sizeable for small values of Bjorken x and not too large Q2
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Fig. 4. The same as in Fig. 3 as a func-
tion of Q2 for different values of x =
0.00127, 0.0125, 0.05, 0.10

and survives up to relatively large Q2. At Q2 > 3.5 GeV2

the structure functions in our model almost coincide with
those in the GRV parametrization despite that the VDM
term is still not small. For Q2 → ∞ only the partonic
contribution survives and F2(x, Q2) → F part

2 (x, Q2) →
FGRV

2 (x, Q2).
The deviations from the partonic model can be also

studied in the language of higher-twist corrections. Then
the structure function can be written formally as

F
p/n
2 (x, Q2) = F

p/n,LT
2 (x, Q2)

×
[

1 +
c
p/n
2 (x)
Q2 +

c
p/n
4 (x)
Q4 + ...

]
. (11)

However, in empirical analyses one usually includes only
one term in (11)

F
p/n
2 (x, Q2) = F

p/n,LT
2 (x, Q2)

[
1 +

cp/n(x)
Q2

]
. (12)

In our model for Q2 ∼ M2
V , Q2

0 there are an infinite num-
ber of active terms in the expansion of the structure func-
tion (11). Therefore the coefficient cp/n (the same is true
for the deuteron counterpart cd) in (12) becomes effec-
tively Q2-dependent cp/n(x) = cp/n(x, Q2).



A. Szczurek, V. Uleshchenko: Nonpartonic components in the nucleon structure functions 669

Fig. 5. The same as in Fig. 4 for differ-
ent values of x = 0.18, 0.35, 0.55, 0.75

As an example in Fig. 6 we show cp and cd as a func-
tion of Bjorken x for three different values of Q2 = 2, 4,
8 GeV2 in the range relevant for the analysis in [23]. In
order to correctly compare our results for cp and cd with
the results of the analysis in [23] the structure function
F

p/n,LT
2 (x, Q2) in (12) will include complete target mass

corrections calculated according to [10]. A fairly similar
pattern is obtained for cp and cd especially at small x.
The rise of cp or cd for x → 1 is caused by our treatment
of the target mass corrections and partially by the VDM
contribution which survives in our model up to relatively
large x. We obtain small negative cp and cd for x < 0.3

in agreement with [23]. The smallnest of cp and cd in our
model for x < 0.3 is due to the cancellation of the positive
VDM contribution and a negative contribution caused by
the external damping factor Q2

Q2+Q2
0

of the partonic con-
tribution in (6). The CKMT parametrization [6] (shown
only in its applicability range for Q2 = 2, 4 GeV2) pro-
vides a very good explanation of cp. It predicts, however,
somewhat larger negative cd for x < 0.3. This will have
some unwanted consequences for cp − cn discussed below.

In Fig. 7 we show cp − cn for Q2 = 2, 4 GeV2 to-
gether with empirical results from [24]. Rather strong Q2-
dependence of cp−cn is observed. Our model correctly de-
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Fig. 7. The difference of twist-four coefficients cp − cn. The
data points are from [24]. The solid lines are the results of our
model while the dashed lines are obtained with the CKMT-
parametrization. In both cases the two curves are for Q2 = 2,4
GeV2

scribes the trend of the experimental data. For comparison
we show also the result obtained by means of the CKMT
parametrization (long-dashed lines) of the structure func-
tions which somewhat fails to reproduce the details of the
empirical results from [24], especially for small Bjorken x.
To our best knowledge no other model in the literature
is able to describe quantitatively this subtle higher-twist
effect.

Our model seems to provide a very good description
of some isovector quantities. As an example in Fig. 8 we
present F p

2 (x, Q2) − Fn
2 (x, Q2) at Q2 = 4 GeV2 obtained

in our model (solid lines for different form factors), as
well as the results obtained with the GRV parametriza-
tion (dashed line) and in the CKMT model (long-dashed
line).4 The NMC data [21] prefer rather our model. As a
consequence of the imperfect description of the deuteron
data the CKMT model fails to describe the difference
F p

2 (x) − Fn
2 (x) for x < 0.3. The success of our model is

related to the violation of the Gottfried Sum Rule and/or
d̄− ū asymmetry which is included in our model explicitly.
In contrast to our model in the CKMT model for Q2 > 2
GeV2 the Gottfried Sum Rule SG = 1

3 .

4 Conclusions and discussion

We have constructed a simple model incorporating non-
perturbative structure of the nucleon and photon. Our
model is a generalization of the well known and successful
Bade lek-Kwieciński model [7]. While the original Bade lek-
Kwieciński model is by construction limited to a small-x
region, our model is intended to be valid in much broader
range. The original VDM model assumes implicitly a large

4 No evolution of the CKMT quark distributions was done,
but it is negligible between 2 → 4 GeV2 for the nonsinglet
quantity.

Fig. 8. F p
2 (x, Q2) − F n

2 (x, Q2) at Q2 = 4 GeV2 compared to
the NMC data. The upper solid line corresponds to our model
with the exponential form factor, the lower solid line to our
model with the Gaussian form factor, the dashed line to the
GRV parametrization and the long-dashed line to the CKMT
parametrization

coherence length for the photon-hadron fluctuation, i.e.
assumes that the hadronic fluctuation is formed far up-
streem of the target. When the fluctuation length becomes
small the VDM is expected to break-down. This effect has
been modelled by introducing an extra form factor. As
a result we have succeeded in constructing a physically
motivated parametrization of both proton and deuteron
structure functions. In comparison to the pure partonic
models with QCD evolution our model leads to a much
better agreement at low Q2 in a broad range of x.

With only two free parameters we have managed to
describe well the transition from the high- to low-Q2 re-
gion simultaneously for the proton and deuteron structure
functions. Our analysis of the experimental data indicates
that the QCD parton model begins to fail already at Q2 as
high as about 3 GeV2. This value is larger than commonly
believed.

In our discussion we have omitted the region of the
HERA data. In our opinion the physics there may be
slightly more complicated. Other effects of isoscalar char-
acter, not included in our analysis, for example the BFKL
pomeron effects [20], may become important.

In contrast to other models in the literature we obtain
a very good description of the NMC F p

2 − Fn
2 data [21]

where the previously mentioned isoscalar effects cancel.
Recently an intriguing, although small, difference be-

tween d̄ − ū asymmetry obtained from recent E866 Drell-
Yan data [22] and muon DIS NMC data [21] has been ob-
served. At least part of the difference can be understood in
our model. We expect for Q2 smaller than about 4 GeV2

an extra Q2 dependence of some parton model sum rules.
We predict a rather strong Q2 effect for the integrand of
the Gottfried Sum Rule where in the first approximation
the VDM contribution cancels.

Recently in the literature there has been sizeable activ-
ity towards a better understanding of higher-twist effects.
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Fig. 6. The twist-four coefficients cp and cd defined by
(12) obtained in our model for Q2 = 2,4,8 GeV2. The
coefficients obtained from the CKMT parametrization
are shown by the long-dashed line for Q2 = 2,4 GeV2.
The experimental data are taken from [23]

Some were estimated within the operator product expan-
sion, some in terms of the QCD sum rules. It is, how-
ever, rather difficult to predict the absolute normalization
of the higher-twist effects. Our model leads to relatively
large higher-twist contributions. For some observables, like
structure functions, they almost cancel. For other observ-
ables, like F p

2 −Fn
2 , the cancellation is not so effective. Our

model provides specific higher-twist effects not discussed
to date in the literature. This will be a subject of a future
separate analysis.
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